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Spring 2013

Abstract

The following is a brief note on näıve set theory. This note contains ev-
erything you need to know about sets for Phil 12A, and then some. Section 1
covers the basic definitions and notation regarding sets and membership. Sec-
tion 2 discusses subsets, intersections, and unions. Section 3 is a “bonus”
section, discussing some fun set-theoretic paradoxes.

1 Sets

DEFINITION 1 (SET)

A set is a collection of objects that is uniquely determined by its members.
That is, if A and B are collections with exactly the same members, then A
and B are the same set.

EXAMPLE 2

Consider the set of GSIs for Phil 12A. We can denote this set in two ways.
One way is to simply list out all of the members of the set, as in:

tArc, Caitlin, Russu

When listing the members of set, neither order nor repetitions matter. So
this set is identical to both of these sets:

tRuss, Caitlin, Arcu , tRuss, Caitlin, Arc, Caitlin, Russu
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1 Sets

Another way to denote the same set is to give a description that all and
only the members of the set satisify. So we can also write the set of GSIs for
Phil 12A as:

tx | x is a GSI for Phil 12Au

EXAMPLE 3

When writing a set in this second way, we’re allowed to use any description
we want to the right of the “|” symbol. So, for instance, we can write:

tx | x is a dogu
tx | x is a student in Phil 12Au
tn | n is a negative numberu
t j | j is a jediu
ts | s is a set of dogsu

G OBSERVATION:

(1) Sets can be infinite in size, as this third set shows.

(2) Sets can be empty, as this fourth set shows: since there are no
jedi, nothing is a member of t j | j is a jediu . We call such a set
the empty set, which we denote by “H”.

(3) Sets can have other sets as members, as this fifth set shows. After
all, sets are things too. (Or are they?)

DEFINITION 4 (MEMBERSHIP)

When an object a is a member of a set A, we write “a P A.” If a is not a
member of A, we write “a R A.”
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2 Subsets, Intersections, Unions

EXAMPLE 5

Some examples of membership and lack thereof (check them yourself):

Arc P tx | x is a GSI for Phil 12Au
2 P t1, 2, 3u

Russ P tBertrand Russell, Russell Crowe, Russell Buehleru
H P tH, tHu , ttHuu , . . .u

6 R tRuss, Caitlin, Arcu
4 R tn | n is a prime numberu

“June” R tw | w is an acceptable word in Scrabbleu
t1, 2u R t1, 2, 3u

2 Subsets, Intersections, Unions

DEFINITION 6 (SUBSET)

We say that a set A is a subset of a set B if every member of A is a member
of B. If A is a subset of B, we write “A Ď B.”

We can picture subsets in the following way:

A Ď B:

B
A

A Ę B:

B
A

Here, “A is a subset of B” means that anything inside A is also inside B. This is
true in the left case, but not in the right case.
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2 Subsets, Intersections, Unions

EXAMPLE 7

Some examples of subsets and non-subsets:

t1, 2u Ď t1, 2, 3u
tFrank, Dino, Natu Ď tx | x is a great singeru

tFrank, Dinou Ę tFrank, Nat, Louisu
tn | n is evenu Ę tn | n is oddu

G OBSERVATION: A few of points about subsets:

(1) Both A and H are automatically subsets of A.

(2) The subset relation is transitive, i.e. if A Ď B and B Ď C, then A Ď C.
Note that this is not the case for membership: for instance, 1 P t1, 2u,
and t1, 2u P tt1, 2u , t3uu, but 1 R tt1, 2u , t3uu.

(3) If A has n elements, then A has 2n subsets.a

a For math aficionados, you can prove this in the finite case using the binomial theorem.
Try it!

DEFINITION 8 (INTERSECTION)

The intersection of A and B is the set of all elements that are in both A and
B. The intersection of A and B is written as “AX B”. In a picture:

A B

AX B
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2 Subsets, Intersections, Unions

DEFINITION 9 (UNION)

The union of A and B is the set of elements that are in either A or B. The
union of A and B is written “AY B”. In a picture:

AY B

A B

EXAMPLE 10

Some examples of intersections and unions:

t1, 2u Y t3, 4u “ t1, 2, 3, 4u
t1, 2u Y t2, 3u “ t1, 2, 3u
t1, 2u X t2, 3u “ t2u
t1, 2u X t3, 4u “ H

G OBSERVATION: Some useful facts about intersections and unions:

(1) For any A, AYH “ A and AXH “ H.

(2) For any A and B, AX B Ď A and AX B Ď B.

(3) For any A and B, A Ď AY B and B Ď AY B.

(4) For any A, B, and C, AX pBYCq “ pAX Bq Y pAXCq.
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3 Bonus: Two Paradoxes

3 Bonus: Two Paradoxes

3.1 Galileo’s Paradox

Which of these sets is bigger?

N “ tn | n is a (non-negative) integeru
“ t0, 1, 2, 3, 4, 5, . . .u
E “ tn | n is an even integeru
“ t0, 2, 4, 6, 8, 10, . . .u

Many people immediately say, “N, of course! After all, E is a subset of N. N
has all of the numbers in E and then some!” However, one could just as easily
say, “Look, both N and E are infinite sets. Therefore, both sets have the same size:
they’re both infinitely big!”

So we have two arguments. One says that N is bigger than E. The other says N
and E have the same size. So which is right?

This paradox was pointed out by Galileo in 1638 with his final work, Two New
Sciences. In that work, Galileo uses this paradox to show that we cannot mean-
ingfully compare the “sizes” of infinite totalities. Hence, we cannot meaningfully
compare the size of N and E. In case you want to read what he said:1

SALV. . . . if I assert that all numbers, including both squares and non-
squares, are more than the squares alone, I shall speak the truth, shall
I not?2

SIMP. Most certainly.

SIMP. If I should ask further how many squares there are one might reply
truly that there are as many as the corresponding number of roots, since
every square has its own root and every root its own square, while no
square has more than one root and no root more than one square.

SIMP. Precisely so.

SALV. But if I inquire how many roots there are, it cannot be denied that
there are as many as there are numbers because every number is a root

1 Galilei, Galileo. Discourses and Mathematical Demonstrations Realting to Two New Sciences,
pp. 1-61. 1638. Web. http://galileoandeinstein.physics.virginia.edu/tns_draft/tns_
001to061.html

2 By “square”, he means a perfect square, e.g. 1, 4, 9, 16, 25, etc.
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3 Bonus: Two Paradoxes 3.1 Galileo’s Paradox

of some square. This being granted we must say that there are as many
squares as there are numbers because they are just as numerous as their
roots, and all the numbers are roots. Yet at the outset we said there are
many more numbers than squares, since the larger portion of them are not
squares. . .

SAGR. What then must one conclude under these circumstances?

SALV. So far as I see we can only infer that the totality of all numbers is
infinite, that the number of squares is infinite, and that the number of their
roots is infinite; neither is the number of squares less than the totality
of all numbers, nor the latter greater than the former; and finally the
attributes “equal,” “greater,” and “less,” are not applicable to infinite,
but only to finite, quantities.

So that’s it then. The sizes of N and E are incomparable. Or are they?

A German mathematician, Georg Cantor, thought otherwise. Cantor argued
that one could meaningfully compare the sizes of N and E by using the notion of a
“one-to-one correspondence.” The idea is captured in the following principle:

CONJECTURE 11 (ONE-TO-ONE CORRESPONDENCE)

Two sets A and B have the same size iff one can find a way to pair each
element of A with exactly one element from B and vice versa, i.e. if one
can find a “one-to-one correspondence” between the elements of A and the
elements of B.

Take an example: suppose you want to know whether a box of utensils contains
the same number of forks as knives. You could just count the forks, then count the
knives, and then compare the two numbers. But another way to do it is to set
a table, placing exactly one fork and one knife on any given placemate. Then
you’d know if you had the same number of forks and knives if every placemate had
exactly one fork and one knife.

The idea is the same for sets in general. To find out if A and B have the same
number of elements, put an element of A and an element of B on every “place-
mate,” and see if there are any placemates with just one element. If there is, then
A and B have different sizes. If there isn’t, then A and B have the same size.

7



3 Bonus: Two Paradoxes 3.1 Galileo’s Paradox

So what about N and E? Well, one way to “set the table” is as follows:

1 2 3 4 . . . n . . .

Ó Ó Ó Ó . . . Ó . . .

2 4 6 8 . . . 2n . . .

Every element of N corresponds to exactly one element in E, and similarly every
element of E corresponds to exactly one element in N. So by the one-to-one corre-
spondence principle, we can conclude that N and E have the same size.

What about N and

Z “ tn | n is an integeru
“ t. . . ,´3,´2,´1, 0, 1, 2, 3, . . .u

Is Z bigger than N, or does it have the same size?
It turns out N and Z do have the same size. For instance, we can set up a

one-to-one correspondence between N and Z as follows:

1 2 3 4 5 6 . . .

Ó Ó Ó Ó Ó Ó . . .

1 ´ 1 2 ´ 2 3 ´ 3 . . .

That is, we have the nth odd number correspond to the nth positive number, and the
nth even number correspond to the nth negative number.

We can also find a one-to-one correspondence between N and:

Q`
“ tn | n is a positive fractionu

Hence, N and Q` have the same size.

“Okay, but so what?” you say. “Why is this interesting? So far, it looks like all
this principle tells us is that infinite sets are all the same size, viz. they’re infinite.
That’s not very interesting. We already knew that!”

Well, actually. . .
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3 Bonus: Two Paradoxes 3.1 Galileo’s Paradox

THEOREM 12 (CANTOR’S DIAGONALIZATION ARGUMENT)

The set

R “ tn | n is a real numberu

is strictly bigger than N. That is, N has a smaller size than R. In fact, there
are more real numbers between 0 and 1 than there are numbers in N!

d PROOF: Suppose not, for reductio. Then, according to our principle, there
must be a one-to-one correspondence between N and the interval r0, 1s. Since
every number between 0 and 1 can be written as a decimal, that correspon-
dence will look something like:

1 Ñ 0.7369205810582 . . .
2 Ñ 0.3141592653589 . . .
3 Ñ 0.2222222222222 . . .
4 Ñ 0.9999000000000 . . .
5 Ñ 0.1000000000000 . . .
...

n Ñ 0.n1n2n3n4n5n6n7n8 . . .

...

It may not be this exact correspondence, but the particular numbers won’t
matter in what follows: we just need some such correspondence to exist.

Given this correspondence, we will construct a new real number r such
that: (i) 0 ď r ď 1 (ii) r does not correspond to any number on this list.
If r does not correspond to any number on this list, then our proposed cor-
respondence cannot really be a one-to-one correspondence. And since this
correspondence was arbitrary, it follows that there is no one-to-one correspon-
dence between N and r0, 1s, contradicting our original assumption.

So now we must construct r in such a way so that these two properties
hold. We proceed as follows: for each n P N on the lefthand side of this list,
take the nth digit of the real number (between 0 and 1) that corresponds to
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3 Bonus: Two Paradoxes 3.1 Galileo’s Paradox

n, and add 1 to that digit (if it’s 9, make it go to 0); then set that new digit as
r’s nth digit. So for instance, in the correspondence above:

1 Ñ 0. 7 369205810582 . . .

2 Ñ 0.3 1 41592653589 . . .

3 Ñ 0.22 2 2222222222 . . .

4 Ñ 0.999 9 000000000 . . .

5 Ñ 0.1000 0 00000000 . . .
...

n Ñ 0.n1n2n3n4n5n6n7n8 . . . nn . . .

...

So our r would be 0.82301 . . . .

I claim that r is nowhere to be found in this list. Why? Well, suppose
(for reductio) it was; say that the number d P N corresponded to r. Question:
what is the dth digit of r? Well, according to our rule for constructing r, the
dth digit of r will be the dth digit of the number d corresponds to plus 1. But
d corresponds to r. So the dth digit of r will be the dth of r plus 1. But that’s a
contradiction: no number can be equal to itself plus 1!

Hence, r is not on this list. And if r isn’t on this list, i.e. if r doesn’t
correspond to any number on the left, then our “correspondence” was not a
one-to-one correspondence after all. So no matter what correspondence we
propose, there will always be numbers we left out.

Hence R is strictly bigger than N. But aren’t both sets infinite? How could one
be bigger than another?

COROLLARY 13

There are different sizes of infinity!
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3 Bonus: Two Paradoxes 3.2 Russell’s Paradox

e COMMENT: How many sizes of infinity? Too many. For each infinity,
there’s another infinity bigger than it. But you can’t just say that there are an
infinite number of infinities. If I asked, “How many infinities are there?” and
you replied, “Infinitely many,” I could reply, “What size of infinity?”.

3.2 Russell’s Paradox

Consider the following set:

R “ ts | s R su

Is R P R?

Suppose R P R. Since for any set s, s P R implies that s R s, it follows that R R R.
So if R P R, then R R R.

So suppose R R R. Since for any s, s R s implies that s P R, it follows that R P R.
So if R R R, then R P R.

So R P R iff R R R. But that’s like saying a sentence of the form “A iff ´A” is
true. And no sentence of that form can be true. And yet the arguments above both
look completely legitimate. So what’s going on?

One very natural response to have is to point out that there’s something very
fishy with the idea that a set can contain itself. After all, if sets could contain
themselves, then we could define a set S such that S “ tS u. Then:

S “ tS u “ ttS uu “ tttS uuu “ . . .

In such a situation, we might feel queasy because we could never explicitly write
out what the elements of S really were. S , in some sense, seems unfounded.

However, as it stands, such a response doesn’t quite suffice. If you just say that
you’re going to rule out sets being members of themselves, then R will be the set
of absolutely everything. But then R will contain every set, including itself (which
is what we wanted to avoid). You need to say more about how to get rid of self-
containing sets without falling into inconsistency.

Bertrand Russell pointed out this paradox in 1901 (though Ernst Zermelo had
already known about the paradox a year earlier). The problem can be compared
to the following paradox:
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Suppose there is a barber in Berkeley that shaves all and only those men
who don’t shave themselves. This sounds innocent enough (after all, isn’t
that what barbers do, i.e. shave people who don’t do it themselves?). But
does the barber shave himself? If he does, then since he only shaves men
who don’t shave themselves, the barber must not shave himself. But if
he doesn’t, then since the barber shaves every man who doesn’t shave
himself, it follows that the barber shaves himself. Paradox.

The most natural way to resolve the “barbershop paradox” is to simply argue
that what the paradox shows is that there can be no such barber. The existence
of such a barber is inconsistent. This can be seen by showing that the following
first-order schema is inconsistent:

@x pShavespbarber, xq ” ´Shaves px, xqq

This can be shown to be unsatisfiable since you can always have x pick out the
barber.

But in the case of sets as we’ve defined them, we have no way to rule out the
existence of such a set. Näıve set theory is in fact inconsistent, and thus it entails
absolutely everything. So if we want a consistent theory of sets, we need to be “less
näıve” and modify our appraoch. This is often done through axiomatizations such
as ZFC, which you can learn more about in nearly any introduction to set theory.
But for the purposes of this course, we can ignore this inconsistency, and simply
avoid the use of such problematic sets. (We’ll mostly only be talking about sets of
things like dogs, people, mammals, etc., which are harmless from this perspective.)
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