SEMANTICS FOR PREDICATE LOGIC

PHIL 140A Spring 2016

- 1. Carry out the following substitutions:
 - (a) $\exists x \ (P(x) \land \forall y \ (Q(y) \rightarrow R(x,y))) \ [y/x]$
 - (b) $(\exists x R(x,c) \lor \forall y \neg P(c,x,y)) [c/x]$
 - (c) $(\neg \forall y Q(f(x,y)) \land f(d,x) = z) [f(x,y)/x]$
 - (d) $(\neg R(x, f(f(x))) \land \exists z (f(z) = f(x))) [z/f(x)][z/f(f(x))]$

Answer:

- (a) $\exists x \ (P(x) \land \forall y \ (Q(y) \rightarrow R(x,y)))$
- (b) $(\exists x R(x,c) \lor \forall y \neg P(c,c,y))$
- (c) $(\neg \forall y Q(f(x,y)) \land f(d,f(x,y)) = z)$
- (d) $(\neg R(x, f(z)) \land \exists z (f(z) = f(x)))$
- 2. Recall from Definition 3.4.4. the following definitions:

$$Cl(\varphi(z_1,\ldots,z_n)) := \forall z_1 \cdots \forall z_n \varphi(z_1,\ldots,z_n)$$

$$\mathfrak{A} \models \varphi \quad \Leftrightarrow \quad \mathfrak{A} \models Cl(\varphi)$$

$$\models \varphi \quad \Leftrightarrow \quad \text{for all } \mathfrak{A}, \mathfrak{A} \models \varphi$$

$$\mathfrak{A} \models \Gamma \quad \Leftrightarrow \quad \text{for all } \varphi \in \Gamma, \mathfrak{A} \models \varphi$$

$$\Gamma \vDash \varphi \quad \Leftrightarrow \quad \text{for all } \mathfrak{A}, \mathfrak{A} \vDash \Gamma \Rightarrow \mathfrak{A} \vDash \varphi.$$

True or false:

(a) $\{P(x)\} \models P(y)$.

Answer: True.

Reason: This is equivalent to $\{ \forall x P(x) \} \models \forall y P(y)$.

(b) $\{P(x)\} \models \forall x P(x)$.

Answer: True.

Reason: This is equivalent to $\{ \forall x P(x) \} \models \forall x P(x)$.

(c) For all formulas φ , and all models \mathfrak{A} , either $\mathfrak{A} \models \varphi$ or $\mathfrak{A} \models \neg \varphi$.

Answer: False.

Example: Let $\mathfrak{A} = (\mathbb{N}, <)$. Consider the formula x < y. Then $\mathfrak{A} \not\models x < y$ (since $\mathfrak{A} \not\models \forall x \forall y \ x < y$) and $\mathfrak{A} \not\models \neg (x < y)$ (since $\mathfrak{A} \not\models \forall x \forall y \ \neg x < y$).

(d) For all formulas φ and ψ , if $\models \varphi \rightarrow \psi$, then $\{\varphi\} \models \psi$.

Answer: True.

Proof: Let $FV(\varphi) - FV(\psi) = \{x_1, \dots, x_n\}$, $FV(\varphi) \cap FV(\psi) = \{y_1, \dots, y_m\}$, and $FV(\psi) - FV(\varphi) = \{z_1, \dots, z_k\}$ (we need to separate the variables that φ and ψ share from the ones they don't share). Suppose for all models \mathfrak{A} :

$$\mathfrak{A} \models \forall x_1 \cdots \forall x_n \forall y_1 \cdots \forall y_m \forall z_1 \cdots \forall z_k (\varphi \rightarrow \psi).$$

We want to show that for all models \mathfrak{A} , if $\mathfrak{A} \models \forall x_1 \cdots \forall x_n \forall y_1 \cdots \forall y_m \varphi$, then $\mathfrak{A} \models \forall y_1 \cdots \forall y_m \forall z_1 \cdots \forall z_k \psi$.

Suppose $\mathfrak{A} \models \forall x_1 \cdots \forall x_n \forall y_1 \cdots \forall y_m \varphi$. Let $a_1, \ldots, a_n \in |\mathfrak{A}|$ be such that $\mathfrak{A} \models \forall y_1 \cdots \forall y_m \varphi[\bar{a}_1/x_1] \cdots [\bar{a}_n/x_n]$. By our supposition, we can universally instantiate to get:

$$\mathfrak{A} \models \forall y_1 \cdots \forall y_m \, \forall z_1 \cdots \forall z_k \, (\varphi \rightarrow \psi) [\bar{a}_1/x_1] \cdots [\bar{a}_n/x_n].$$

But since none of x_1, \ldots, x_n occur in ψ , this is equivalent to:

$$\mathfrak{A} \models \forall y_1 \cdots \forall y_m \, \forall z_1 \cdots \forall z_k \, (\varphi[\bar{a}_1/x_1] \cdots [\bar{a}_n/x_n] \to \psi).$$

Now, suppose $b_1, \ldots, b_m, c_1, \ldots, c_k \in |\mathfrak{A}|$. Then by universal instantiation:

$$\mathfrak{A} \models \varphi[\bar{a}_1/x_1] \cdots [\bar{a}_n/x_n] [\bar{b}_1/y_1] \cdots [\bar{b}_m/y_m]$$

$$\mathfrak{A} \models (\varphi[\bar{a}_1/x_1] \cdots [\bar{a}_n/x_n] \to \psi) [\bar{b}_1/y_1] \cdots [\bar{b}_m/y_m] [\bar{c}_1/z_1] \cdots [\bar{c}_k/z_k].$$

But since none of z_1, \ldots, z_k occur in $\{y_1, \ldots, y_m\}$, this second line is equivalent to:

$$\mathfrak{A} \models (\varphi[\bar{a}_1/x_1]\cdots[\bar{a}_n/x_n][\bar{b}_1/y_1]\cdots[\bar{b}_m/y_m] \rightarrow \psi[\bar{b}_1/y_1]\cdots[\bar{b}_m/y_m][\bar{c}_1/z_1]\cdots[\bar{c}_k/z_k]).$$

Hence:

$$\mathfrak{A} \models \psi[\bar{b}_1/y_1] \cdots [\bar{b}_m/y_m][\bar{c}_1/z_1] \cdots [\bar{c}_k/z_k].$$

Since $b_1, \ldots, b_m, c_1, \ldots, c_k$ were arbitrary, $\mathfrak{A} \models \forall y_1 \cdots \forall y_m \forall z_1 \cdots \forall z_k \psi$.

(e) For all formulas φ and ψ , if $\{\varphi\} \models \psi$, then $\models \varphi \rightarrow \psi$.

Answer: False.

Example: Let $\varphi = P(x)$ and $\psi = P(y)$. Then it's true that for all models \mathfrak{A} , if $\mathfrak{A} \models P(x)$ (i.e., $\mathfrak{A} \models \forall x P(x)$), then $\mathfrak{A} \models P(y)$ (i.e., $\mathfrak{A} \models \forall y P(y)$). However, it's not true that for all models \mathfrak{A} , $\mathfrak{A} \models P(x) \to P(y)$. This is equivalent to $\mathfrak{A} \models \forall x \forall y \ (P(x) \to P(y))$, which is equivalent to $\mathfrak{A} \models \exists x P(x) \to \forall y P(y)$. But not every model makes this true.

(f) For all formulas $\varphi \in \varphi$ iff $\varnothing = \varphi$.

Answer: True.

Reason: $\vDash \varphi$ iff for all \mathfrak{A} , $\mathfrak{A} \vDash \varphi$. But this holds iff for all \mathfrak{A} , if $\mathfrak{A} \vDash \psi$ for every $\psi \in \emptyset$, then $\mathfrak{A} \vDash \varphi$. And so this is holds iff $\emptyset \vDash \varphi$.

- 3. Which of the following is true for all models \mathfrak{A} and all formulas φ and ψ ?
 - (a) $\mathfrak{A} \models \neg \varphi \text{ iff } \mathfrak{A} \not\models \varphi.$ False.
 - (b) $\mathfrak{A} \models \varphi \land \psi \text{ iff } \mathfrak{A} \models \varphi \text{ and } \mathfrak{A} \models \psi.$ True.
 - (c) $\mathfrak{A} \models \varphi \lor \psi$ iff $\mathfrak{A} \models \varphi$ or $\mathfrak{A} \models \psi$. False.
 - (d) $\mathfrak{A} \models \varphi \rightarrow \psi$ iff $\mathfrak{A} \models \varphi$ only if $\mathfrak{A} \models \psi$. False.
 - (e) $\mathfrak{A} \models \varphi \leftrightarrow \psi$ iff $[\mathfrak{A} \models \varphi \text{ iff } \mathfrak{A} \models \psi]$. False.
 - (f) $\mathfrak{A} \models \forall x \varphi \text{ iff for all } a \in |\mathfrak{A}|, \mathfrak{A} \models \varphi[\bar{a}/x].$ True.
 - (g) $\mathfrak{A} \models \exists x \varphi \text{ iff for some } a \in |\mathfrak{A}|, \mathfrak{A} \models \varphi[\bar{a}/x].$ False.