Compactness and Löwenheim-Skolem

Phil 140A

- 1. Suppose a sentence σ is true in every infinite model. Show that there's an $n \in \mathbb{N}$ such that σ is true in every model of at least size *n*.
- 2. Let $\varphi(x)$ be a formula. For any model \mathfrak{A} , define $\varphi(\mathfrak{A}) \coloneqq \{a \in A \mid \mathfrak{A} \models \varphi(\bar{a})\}$ (the set of elements in \mathfrak{A} satisfying φ). Suppose for each $n \in \mathbb{N}$, there is a model \mathfrak{A}_n such that $|\varphi(\mathfrak{A}_n)| \ge n$. Show that there's a model \mathfrak{A} such that $|\varphi(\mathfrak{A})| \ge \aleph_0$ (i.e., $\varphi(\mathfrak{A})$ is infinite).
- 3. Suppose there's a model \mathfrak{A} such that $\varphi(\mathfrak{A})$ is infinite. Show that for any infinite cardinal number λ , there's a model \mathfrak{B} such that \mathfrak{B} satisfies the same sentences as \mathfrak{A} and $\varphi(\mathfrak{B})$ is exactly of size λ .
- 4. Let *P* and *Q* be unary-predicates. Show that there is no first-order sentence μ that is true in a model \mathfrak{A} iff $|P(\mathfrak{A}) \cap \neg Q(\mathfrak{A})| < |P(\mathfrak{A}) \cap Q(\mathfrak{A})|$ (i.e., most *P*s are *Q*s in \mathfrak{A}).